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Context Method Applications Conclusion

Objective

Objective I

Context

Very specific applications in medical
robotics, e.g. interventional radiology

Need for compact architectures

Issue

Synthesis of optimized architectures
remains a challenge

Proposition

Development of numerical tools for the
systematic study of mechanisms

First property of interest: the
mechanism workspace

↓ ?
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Objective

Objective II

Given a mechanism and its
non-linear loop-closure equations


x − (l1cos(θ1) + l2cos(θ1 + θ2)

+l3cos(θ1 + θ2 + θ3)) = 0

y − (l1sin(θ1) + l2sin(θ1 + θ2)
+l3sin(θ1 + θ2 + θ3)) = 0

θ1

θ2

θ3

O

l2

l1

P(x, y)

l3

y

x

Joint constraints: θi ∈ [−π/3;π/3]

Variable change: θi = π/3 sin(vi )

Fast,
general,
−→

automatic
method

Generate the mechanism reachable
workspace “with one click”
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State of the art

Existing workspace analysis methods (overview)

Purely geometric (Gosselin [1990]) or analytic (Abdel-Malek and Yeh
[1997]) :

Precise and continuous solutions.
Specific to an architecture or a class of mechanisms

Interval analysis (Merlet [1999], Bohigas et al. [2012]) :

Generic, and guaranteed solutions.
Difficult tradeoff accuracy/computation time, especially in
high-dimensional workspaces

Continuation on the workspace boundaries (Haug et al. [1996]) :

Fast, accurate, and general.
Computation of the Jacobian, 1D paths, and discrete results.

To be improved: tradeoff accuracy - computation time - generality

Most appropriate method for a systematic study : Haug et al. [1996]

Its drawbacks have limited its dissemination
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State of the art

Equation system of the workspace boundaries (Haug et al. [1996])

Operational coordinates u, joint coordinates v, constraint equations

RW(u, v) = 0 (1)

Workspace definition:

W =
{

u | ∃ v such that RW(u, v) = 0
}

Workspace boundaries defined as configurations where the Jacobian RWv
is rank deficient

Solutions of the following extended residual system:

R∂W(u, v, ξ) =

 RW(u, v)(
RWv

)ᵀ
(u, v).ξ

ξᵀ.ξ − 1

 = 0. (2)
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Extended equation system

Stage 1: Automatic generation of the boundary equations

User tasks

(1) Define RW(u, v) and
(u, v)

(2) Implement the
augmented system

Automated tasks

(3) Differentiate with respect
to v using Automatic
Differentiation

RW(u, v) −→

 RW(u, v)(
RW

)ᵀ
(u, v).ξ

ξᵀ.ξ − 1

 −→


RW(u, v)
RWv (u, v)(
RW

)ᵀ
(u, v).ξ(

RWv
)ᵀ

(u, v).ξ
ξᵀ.ξ − 1

 −→ R∂W(u, v, ξ)

→ The Jacobian is computed systematically
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Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)

(1) Initial Point

(2) Newton-Raphson

(3) Solution Point

(4) Jacobian evaluation

(5) First-order continuation

Higher-order continuation

(4) Higher-Order differentiation

(5) Taylor polynomial of R∂W

in a = 0

(6) Solution (u(a),v(a))

(7) Validity domain
computation a ∈ [0, amax ]

x

y
Solution branch of R∂W(u, v) = 0

O
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Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)

(1) Initial Point

(2) Newton-Raphson

(3) Solution Point

(4) Jacobian evaluation
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Planar RRR

RRR workspace boundaries I

Simulation parameters

l1 4
l2 2
l3 1
θi ∈ [−π/3;π/3]

u0 (7, 0)
v0 (0, 0, 0)
ξ0 (1, 0)
εseries 1e − 6
εN−R 1e − 5

Results

20 solution branches connected by
bifurcation points

Automatic detection of bifurcation points
and branch switching

Branches related to different Inverse
Kinematics Solutions may overlap
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Planar RRR

RRR workspace boundaries II

Compared to Haug and Bohigas,
solution branches are continuous
thanks to the Taylor series

Even close boundaries can be identified
easily

Very good compromise between
computation time and accuracy

Method Computation time Accuracy ε
Branch-and-prune 1m15s 5e − 2
Branch-and-prune 196m42s 1e − 4

Diamant 7s 1e− 6
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Orthoglide

Orthoglide presentation (Pashkevich et al. [2006])

ρy

ρz

ρx

P

↓

(0, ρy , 0)

(ρx , 0, 0)

(0, 0, ρz)

O

P(x , y , z)

z

y

x

Simplified kinematics

Isotropic configuration
(x , y , z) = (0, 0, 0),
(ρx , ρy , ρz) = (l , l , l)
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Orthoglide

Orthoglide workspace boundaries

User tasks

3D WS → intersection with a plan

Solve discretized system as done for the
RRR

Assembly of curves to build the workspace

(0, ρy , 0)

(ρx , 0, 0)

(0, 0, ρz)

O

P(x , y , z)

z

y

x

Results

Sets of isoaltitude and isoorientation slices
of the mechanism workspace boundaries

Convex surface corresponding to a leg
orthogonal to its axis of actuation
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Conclusion

Method

Contribution

Systematic generation of the extended equation system
characterizing the workspace boundaries of any mechanism and
related sets of equations

Good results with the RRR (2D workspace) and the Orthoglide (3D
workspace)

Good ratio accuracy/computational load

Limits

1D path

Need of a strategy to ensure the exhaustive detection of workspaces
with multiple components that are not connected
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Conclusion

Future works

Further validation of the method on higher-dimensional workspaces

Reconstruct surfaces using the Taylor series

Integration of the method in an optimization scheme
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Conclusion

Thanks for your attention

Do you have Questions?
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Introducing Automatic Differentiation

Existing differentiation methods
Hand-written:

Numerical (finite differences):

Symbolic:

Differentiation rules

f ′(a) = lim
h→0

f (a+h)−f (a)
h

Maple

Automatic differentiation of a computer code

Decomposition of an expression according to the chain rule
(g ◦ f )′(u) = g ′(f (u)) · f ′(u)

Differentiation using basic (sin(x))′ = x ′cos(x) and
combined (fg)′ = f ′g + fg ′ rules

Differentiation of a source code with Tapenade Hascoet and Pascual
[2013] http://www-tapenade.inria.fr:8080/tapenade/index.jsp

Implemented code
forward (tangent)

−→
differentiation

Differentiated code
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Stage 2: II - Higher-order continuation principle

Under-determined residual equations:

R∂W(U) = 0

with U = (u, v, ξ)

Path equation:

a =

〈
U(a)− u(0),

∂U

∂a
(0)

〉
Solutions as Taylor series:

U(a) =
K∑

k=0

akUk with Taylor coefficients Uk =
1

k!

∂kU

∂ak
(0)
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Stage 2: III - Diamant method (Charpentier [2012])

Taylor series introduced in the system to solve:

R∂W(U(a)) =
K∑

k=0

akR∂Wk = 0

System decomposed in an iterative sequence of K linear systems:
{R1}U1 = −

{
R1|U1=0

}
, 〈U1,U1〉 = 1,

{R1}Uk = −
{
Rk|Uk=0

}
, 〈Uk ,U1〉 = 0,

... for k = 2, ..,K .

Requires higher-order differentiation of R∂W(U(a))

Can be computed efficiently with Automatic Differentiation
(operator overloading)

The continuous solution branches are computed systematically and
faster
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Stage 2: IV - Diamanlab implementation (Charpentier
[2012])

Screencast of interactive continuation on the workspace boundaries
of the planar RRR

-8

-6

-4

-2

0

2

4

6

8

-2 0 2 4 6 8

y

x

6

2 5

4

1

3

7

8

9

10

20

11

14

13

12 15

16

17

19

18

Solution branches

Bifurcation points

π
3

Diamanlab v1.0 is freely available at the bottom of the following
download page:
http://manlab.lma.cnrs-mrs.fr/spip/spip.php?rubrique1
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Higher-order differentiation by operator overloading

Definition of a Taylor type comprising the variable derivatives (Taylor
coefficients)

Taylor
Order
Value
Coefficient

Operator overloading through recurrence formula

function recurrence formula k
w = u + v wk = uk + vk

w = u · v wk =
k∑

j=0

ujvk−j

w = u
v

wk =
1

v0

uk − k∑
j=0

wjvk−j
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