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Context
e0
Objective

Objective |

@ Very specific applications in medical
robotics, e.g. interventional radiology

@ Need for compact architectures

Issue

@ Synthesis of optimized architectures
remains a challenge

V.

o Development of numerical tools for the
systematic study of mechanisms

o First property of interest: the
mechanism workspace
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Context
oe
Objective

Objective Il

Given a mechanism and its

non-linear loop-closure equations

x — (hcos(01) + hcos(61 + 62)
+hcos(01 + 62 + 03)) =0

y — (Ilsin(el) + Igsin(01 —+ 02)
+I3sin(91 + 6 + 93)) =0

P(x, y)
03
[}

0>

@ Joint constraints: 0; € [—7/3; 7 /3]
@ Variable change: 6; = /3 sin(v;)

Fast,
general,
_>
automatic
method

Generate the mechanism reachable
workspace * e click”

>

Workspace boundaries
Bifgrcation points o
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Context
[ Je]
State of the art

Existing workspace analysis methods (overview)

@ Purely geometric (Gosselin [1990]) or analytic (Abdel-Malek and Yeh
[1997]) :

° solutions.

e Specific to an architecture or a class of mechanisms
@ Interval analysis (Merlet [1999], Bohigas et al. [2012]) :

o

e Difficult tradeoff accuracy/computation time, especially in

high-dimensional workspaces

o Continuation on the workspace boundaries (Haug et al. [1996]) :

] o

o Computation of the Jacobian, 1D paths, and discrete results.
@ To be improved: tradeoff accuracy - computation time - generality
@ Most appropriate method for a systematic study : Haug et al. [1996]
@ Its drawbacks have limited its dissemination
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Context
oe
State of the art

Equation system of the workspace boundaries (Haug et al. [1996])

@ Operational coordinates u, joint coordinates v, constraint equations
R (u,v) =0 (1)
@ Workspace definition:

W= {u | 3 v such that R (u,v) = 0}

@ Workspace boundaries defined as configurations where the Jacobian RYY
is rank deficient

@ Solutions of the following extended residual system:
R™(u,v)
R (u,v, &) = [(RY)" (u,v).£| =0. (2)
reE—-1
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Method
o

Extended equation system

Stage 1: Automatic generation of the boundary equations

(1) Define R™(u,v) and
(u,v)

(2) Implement the
augmented system

‘ R“'(.u.v)
RY(u,v) — (RV)T (u,v).£

£Te1
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Method
o

Extended equation system

Stage 1: Automatic generation of the boundary equations

Automated tasks

(1) Define R™(u,v) and (3) Differentiate with respect
(u,v) to v using Automatic
(2) Implement the Differentiation
augmented system
R"Y(u,v)
RY(u,v) RY(u,v)
RV(u,v) — ( (RV)T (u,v).£ ) — | (RY)T(u,v).&
e 1 (RY)" (u.v).¢
£Te—1
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Method
o

Extended equation system

Stage 1: Automatic generation of the boundary equations

Automated tasks

(1) Define R™(u,v) and (3) Differentiate with respect
(u,v) to v using Automatic
(2) Implement the Differentiation

augmented system

R"Y(u,v)
R (u,v)
RY(u,v) — | (RM) (u,v). | — — RM(u,v,€)
§1.6-1 (RP")T (u,v).€
Te-1
— The Jacobian is computed systematically )
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o
Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)

Solution branch of R?"(u,v) =0

" A
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Method
o
Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)

(1) Initial Point Solution branch of RV (u,v) =0

" A
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Method
o
Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)

(1) Initial Point Solution branch of R?Y(u,v) =0
(2) Newton-Raphson y A
(3) Solution Point

(u(0),v(0))
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Method
o

Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)

1) Initial Point Solution branch of RV (u,v) =0
2) Newton-Raphson
) Solution Point
4)
)

5

Jacobian evaluation

(
(
3
(
(

First-order continuation
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Method
o
Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)

(1) Initial Point Solution branch of RV (u,v) =0
(2) Newton-Raphson y A
(3) Solution Point

(u(0),v(0))

v

Higher-order continuation

A\
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Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)
(1) Initial Point

(2) Newton-Raphson

(3) Solution Point

v

Higher-order continuation

(4) Higher-Order differentiation

(5) Taylor polynomial of RV
ina=20

A\
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(4) R?Y
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Applying Higher-Order continuation to robotics

Stage 2: Higher-order continuation principle

First-order continuation (Haug 1996)

(1) Initial Point Solution branch of RV (u,v) =0

(2) Newton-Raphson y A
(3) Solution Point

v

Higher-order continuation

(4) Higher-Order differentiation
(5) Taylor polynomial of RV (U, V) ini
ina=_0
(6) Solution (u(a),v(a)) 0] T >
(7) Validity domain
computation a € [0, amax]

(7)
(u(amax),
V(amax))
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Applications
@0

Planar RRR

RRR workspace boundaries |

Simulation parameters

Solution branches

Bifurcation points o
/1 4 up (7, 0) 6
b 2 Vo (07 0, 0)
kB 1 o (17 0) 4
0; € [-n/3;7/3] Eseries le=6
EN—R le—5

@ 20 solution branches connected by
bifurcation points a4t

@ Automatic detection of bifurcation points
and branch switching

@ Branches related to different Inverse s
Kinematics Solutions may overlap «
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oce

Planar RRR

RRR workspace boundaries Il

@ Compared to Haug and Bohigas,
solution branches are continuous
thanks to the Taylor series

° Eve_n close boundaries can be identified 2. 5 5 £ 6
easily x

@ Very good compromise between
computation time and accuracy

Method Computation time  Accuracy € >
Branch-and-prune 1m15s be — 2
Branch-and-prune 196m42s le—4

Diamant 7s le—6
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@0

Orthoglide

Orthoglide presentation (Pashkevich et al. [2006])

o Simplified kinematics
+ @ Isotropic configuration
(x,y,2) =(0,0,0),
(an ,Oy,Pz) = (/7 Ia /)
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Applications
(o] J

Orthoglide

Orthoglide workspace boundaries

@ 3D WS — intersection with a plan @ Sets of isoaltitude and isoorientation slices

@ Solve discretized system as done for the of the mechanism workspace boundaries

RRR @ Convex surface corresponding to a leg

@ Assembly of curves to build the workspace orthogonal to its axis of actuation
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Conclusion

Method

Contribution

@ Systematic generation of the extended equation system
characterizing the workspace boundaries of any mechanism and
related sets of equations

@ Good results with the RRR (2D workspace) and the Orthoglide (3D
workspace)

@ Good ratio accuracy/computational load

@ 1D path

@ Need of a strategy to ensure the exhaustive detection of workspaces
with multiple components that are not connected
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oeo
Conclusion

Future works

@ Further validation of the method on higher-dimensional workspaces
@ Reconstruct surfaces using the Taylor series

@ Integration of the method in an optimization scheme
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Conclusion

Thanks for your attention

Do you have Questions?

1
0.5

~n O

o NG
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Introducing Automatic Differentiation

Ditferentiation rules
@ Numerical (finite differences): f'(a) = iliLno w

@ Symbolic: Maple

4

Automatic differentiation of a computer code

@ Decomposition of an expression according to the chain rule
(gof)(u)=2g'(f(v)) f'(u)

o Differentiation using basic (sin(x))’ = x’cos(x) and
combined (fg)' = f'g + fg’ rules

Differentiation of a source code with Tapenade Hascoet and Pascual

[2013] http://www-tapenade.inria.fr:8080/tapenade/index. jsp
forward (tangent)

Implemented code —

differentiation

Differentiated code
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Stage 2: Il - Higher-order continuation principle

@ Under-determined residual equations:
R (U)=0

with U = (u, v, )
@ Path equation:

ou
2= (UGa) - u(0). 5,(0))
@ Solutions as Taylor series:

K
U(a) = Z akUy with Taylor coefficients U, =
k=0

1 9kU
T 9ax )
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Stage 2: Il - Diamant method (Charpentier [2012])

@ Taylor series introduced in the system to solve:
K
R (U(a)) = "RV =0
k=0

@ System decomposed in an iterative sequence of K linear systems:
{Ri} Uy = — ERuulo}’ (U,Up) =1
{R1} Uk = —{Ryu,=0}, (U, U1)=0,

: for k =2,.., K.

@ Requires higher-order differentiation of R?"(U(a))

@ Can be computed efficiently with Automatic Differentiation
(operator overloading)

@ The solution branches are computed and
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Stage 2: IV - Diamanlab implementation (Charpentier
[2012])

@ Screencast of interactive continuation on the workspace boundaries
of the planar RRR

@ Diamanlab v1.0 is freely available at the bottom of the following
download page:
http://manlab.lma.cnrs-mrs.fr/spip/spip.php?rubriquel
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Higher-order differentiation by operator overloading

Definition of a Taylor type comprising the variable derivatives (Taylor
coefficients)

Taylor
Order
Value
Coefficient

.

Operator overloading through recurrence formula

function recurrence formula k
w=u+v Wi = Uk + Vi
k
wW=u-v Wkig ujVi_j
Jj=0
k
u 1
w = - Wi = — uk—g VVJ‘Vk_j
v VO
Jj=0
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